标签 数据分析 下的文章

数据分析相关概念的理解

所有的数据产品最后都可以抽象成:指标 +维度
维度,能够向上聚合(实际上就是SUM)
对于部分复合型指标,实际上就是由多个基础指标经过一些简单的数学运算得到
指标和维度是业务来定的,与技术无关
将这些指标和维度,按照分析的主题域梳理成指标维度矩阵

数据分析是什么

摘自《谁说菜鸟不会数据分析》,基础理论到哪里都是一样的,这里就没写个人心得了。只想强调一点:Hadoop可以作为数据分析的一种工具!
PS:如果你是一个研究hadoop的程序员的话,在你的心里一定是hadoop更重要,但是在数据分析这个领域,hadoop只是其中的一种工具,还有大量做数据分析的在使用其他工具。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总、理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这里数据也称观测值,是通过实验、测量、观察、调查等方式获取的结果,常常以数量的形式展现出来。
数据分析的目的是把隐藏在一大批看似杂乱无章的数据背后的信息集中和提炼出来,总结出研究对象的内在规律。在实际工作当中,数据分析能够帮助管理者进行判断和决策,以便采取适当策略与行动。例如,如果企业的高层希望通过市场分析和研究,把握当前产品的市场动向,制订合理的产品研发和销售计划,就必须依赖数据分析才能完成。
在统计学领域,有些学者将数据分析划分为描述性数据分析、探索性数据分析以及验证性数据分析。其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于验证已有假设的真伪性。
从另一个角度看,描述性数据分析属于初级数据分析,常见的分析方法有对比分析法、平均分析法、交叉分析法等;而探索性数据分析以及验证性数据分析属于高级数据分析,常见的分析方法有相关分析、因子分析、回归分析等。我们日常学习和工作中涉及的数据分析方法主要是描述性数据分析,也就是大家常用的初级数据分析。